
Tutorial 9 MATH2050A Mathematical Analysis I 26/11/2020

A Reminder on Home Test 2

Please be reminded that Home Test 2 will be held next Saturday (05/12/2020).

• Duration: 24 hours (05/12 12:00 noon to 06/12 12:00 noon)

• Content: Section 6 - 8 of Lecture Note. (Reference: Chapter 4 and 5 of textbook)

• Delivery: The test paper will be sent to the university email account at 12:00 noon.

• Submission: Submit one PDF file to Blackboard. (Same as homework assignments)

A review exercise is posted. The suggest solution will be posted on 30/11/2020 (Monday).

Continuous Functions on Intervals

In this section, we study continuous functions defined on intervals. There are four important
results. The first two theorems rely on the fact that closed bounded intervals are compact.
The last two theorems rely on the fact that intervals are connected.

Boundedness Theorem (c.f. 5.3.2). Let I = [a, b] be a closed bounded interval and let
f : I → R be continuous on I. Then f is bounded on I. i.e., there exists M > 0 such that

|f(x)| ≤M, ∀x ∈ I.

Definition (c.f. Definition 5.3.3). Let f : A→ R be a function. f is said to have an absolute
maximum on A if there exists x∗ ∈ A such that

f(x∗) ≥ f(x), ∀x ∈ A.

Similarly, f is said to have an absolute mimimum on A if there exists x∗ ∈ A such that

f(x∗) ≤ f(x), ∀x ∈ A.

Maximum-Minimum Theorem (c.f. 5.3.4). Let I = [a, b] be a closed bounded interval
and let f : I → R be continuous on I. Then f has an absolute maximum and an absolute
minimum on I.

Remark. In the Lecture Note, closed bounded intervals are replaced by compact subsets.
Nonetheless, the ideas are similar. The textbook tends to avoid the term compactness.

Example 1. Consider the continuous function f : (0, 1]→ R defined by f(x) = 1/x. Notice
that f is unbounded on (0, 1] and hence does not have an absolute maximum on (0, 1]. It
follows that the Boundedness Theorem and the Maximum-Minimum Theorem do
not hold if the assumption that the interval I being closed is dropped.

Exercise. Show that f is unbounded on (0, 1].
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Example 2. Consider the continuous function f : [0,∞)→ R defined by f(x) =
√
x. Notice

that f is unbounded on [0,∞) and hence does not have an absolute maximum on [0,∞).
It follows that the Boundedness Theorem and the Maximum-Minimum Theorem do
not hold if the assumption that the interval I being bounded is dropped.

Exercise. Show that f is unbounded on [0,∞).

Example 3 (c.f. Section 5.3, Ex.13). Let f : R→ R be a continuous function. Suppose

lim
x→−∞

f(x) = L = lim
x→∞

f(x).

Show that

(a) f is bounded on R.

(b) f has either an absolute maximum or an absolute minimum.

Solution. .

(a) By definition of limits to infinity, there exists a < 0 and b > 0 such that

|f(x)− L| < 1 whenever x < a or x > b.

i.e., L − 1 < f(x) < L + 1 whenever x ∈ (−∞, a) ∪ (b,∞). Now, notice that f is
continuous on the closed bounded interval [a, b]. By the Boundedness Theorem,
there exists M ′ > 0 such that |f(x)| < M ′ whenever x ∈ [a, b]. We can then see that
f is bounded by M = max{|L± 1|,M ′} on R.

Exercise. Show that if α ≤ x ≤ β, then |x| ≤ max{|α|, |β|}.

(b) Firstly, suppose f is a constant function. Then we must have f(x) = L for all x ∈ R. In
this case, f must have absolute maximum and minimum. On the other hand, suppose
f is not a constant function. Then there exists some c ∈ R such that f(c) 6= L. By
definition of limits to infinity, there exists a < c and b > c such that

|f(x)− L| < |f(c)− L| whenever x < a or x > b. (1)

Now, notice that f is continuous on the closed bounded interval [a, b]. By the Maximum-
Minimum Theorem, there exists x∗, x∗ ∈ [a, b] such that

f(x∗) ≤ f(x) ≤ f(x∗), ∀x ∈ [a, b].

In particular, f(x∗) ≤ f(c) ≤ f(x∗). To expand the absolute value in (1), consider the
case f(c) > L, then whenever x ∈ (−∞, a) ∪ (b,∞),

f(x)− L ≤ |f(x)− L| < f(c)− L =⇒ f(x) < f(c).

In this case, f(x) ≤ f(x∗) for all x ∈ R. i.e, f has an absolute maximum on R.
Conversely, consider the case f(x) < L, then whenever x ∈ (−∞, a) ∪ (b,∞),

L− f(x) ≤ |f(x)− L| < L− f(c) =⇒ f(c) < f(x).

In this case, f(x∗) ≤ f(x) for all x ∈ R. i.e, f has an absolute mimimum on R.
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Bolzanos Intermediate Value Theorem (c.f. 5.3.7). Let I be an interval and let f : I →
R be continuous on I. If a, b ∈ I and if k ∈ R satisfies f(a) < k < f(b), then there exists a
point c ∈ I between a and b such that f(c) = k.

The following theorem characterise whether a subset of R is an interval or not. Using this
characterisation and the Intermediate Value Theorem, we can prove the fourth theorem.

Characterization Theorem (c.f. 2.5.1). If S ⊆ R contains at least two points and has
the property

x, y ∈ S =⇒ [x, y] ⊆ S,

then S is an interval.

Preservation of Intervals Theorem (c.f. 5.3.10). Let I be an interval and let f : I → R
be continuous on I. Then the set f(I) is an interval.

Example 4. Consider A = [0, 1] ∪ [2, 3] and the continuous function f : A → R defined
by f(x) = x. Notice that f(A) = A is not an interval. Moreover, f(0) < 1.5 < f(3) but
there are no values x ∈ A satisfies f(x) = 1.5. It follows that the Intermediate Value
Theorem and the Preservation of Intevals Theorem do not hold if the assumption that
the domain being an interval is dropped.

Exercise. Show that f is continuous on [0, 1] ∪ [2, 3].

Example 5. Consider the polynomial f(x) = x5 + x3 + 1, which is continuous on R. We
proceed to find a root of f by using the Bisection Method.

• Set a1 = −1 and b1 = 1. Notice that f(a1) = −1 < 0 and f(b1) = 3 > 0. Hence by
the Intermediate Value Theorem, f has a root in the interval [a1, b1]. Consider the
mid-point c1 = (a1 + b1)/2 = 0, we calculate f(c1) = f(0) = 1 > 0.

• Set a2 = a1 and b2 = c1. Notice that f(a2) = −1 < 0 and f(b2) = 1 > 0. Hence by
the Intermediate Value Theorem, f has a root in the interval [a2, b2]. Consider the
mid-point c2 = (a2 + b2)/2 = −0.5, we calculate f(c2) = f(−0.5) = 0.84375 > 0.

• Similarly for each n ∈ N, if f(cn) < 0, set an+1 = cn and bn+1 = bn; otherwise set
an+1 = an and bn+1 = cn. Then the values of f at the endpoints an+1 and bn+1 have
different signs. By the Intermediate Value Theorem, f has a root in the interval
[an+1, bn+1].

We have constructed a nested sequence of closed bounded intervals [an, bn], each contains a
root of f , with an additional property that lim(bn − an) = 0. Hence the value of a root of f
can be approximated by their mid-points cn, with the error converging to zero.

Remark. The Bisection Method allow us to numerically approximate real solutions of
continuous functions, it may not give us the exact value of the solutions. Moreover, this
method may not give us all real solutions.
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